Generalization of Gorenstein rings – from the past to the future –

Naoki Endo

Meiji University

The 11th Japan-Vietnam Joint seminar on Commutative Algebra by and for young mathematicians

March 29, 2023

§1. Introduction

Question 1.1

Why are there so many Cohen-Macaulay rings which are not Gorenstein?

Hierarchy of local rings (in terms of homological algebra)

 $\begin{array}{l} \mathsf{Regular} \Rightarrow \mathsf{Complete} \ \mathsf{Intersection} \Rightarrow \mathsf{Gorenstein} \Rightarrow \mathsf{Cohen-Macaulay} \\ \Rightarrow \mathsf{Buchsbaum} \Rightarrow \mathsf{Generalized} \ \mathsf{Cohen-Macaulay} \ (\mathsf{FLC}) \end{array}$

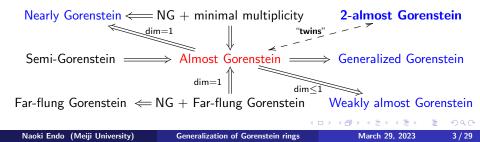
Problem 1.2

Find new and interesting classes of rings which fill in a gap between Gorenstein and Cohen-Macaulay rings so as to stratify Cohen-Macaulay rings.

Preceding researches

- Almost Gorenstein rings
- Semi-Gorenstein rings
- Generalized Gorenstein rings
- 2-almost Gorenstein rings
- Weakly almost Gorenstein rings · · · Dao-Kobayashi-Takahashi
- Nearly Gorenstein rings
- Far-flung Gorenstein rings

- ···· Barucci-Fröberg, Goto-Matsuoka-Phuong Goto-Takahashi-Taniguchi
- · · · · Goto-Takahashi-Taniguchi
- · · · · Goto-Kumashiro
- · · · Chau-Goto-Kumashiro-Matsuoka
- · · · · Herzog-Hibi-Stamate
- · · · · Herzog-Kumashiro-Stamate



§2. Preliminaries

Let

- (A, \mathfrak{m}) a CM local ring with $d = \dim A > 0$
- I an m-primary ideal of A.

Then $\exists e_i(I) \in \mathbb{Z} \ (0 \leq i \leq d)$ s.t.

$$\ell_{A}(A/I^{n+1}) = e_{0}(I)\binom{n+d}{d} - e_{1}(I)\binom{n+d-1}{d-1} + \dots + (-1)^{d} e_{d}(I) \quad (n \gg 0).$$

Note that

- $e_0(I) > 0$ and $e_1(I) \ge 0$
- A is a RLR \iff $e_0(\mathfrak{m}) = 1$, if A is unmixed. (Samuel, Nagata)

Theorem 2.1 (Koura-Taniguchi) Set $\Lambda(A) = \{e_1(I) \mid \sqrt{I} = \mathfrak{m}\}$. Then $\#\Lambda(A) < \infty \iff d = 1$ and A is analytically unramified. When this is the case, $\sup \Lambda(A) = \ell_A(\overline{A}/A)$. In what follows, let

- (R, \mathfrak{m}) a CM local ring with dim R = 1
- $I \subsetneq R$ an ideal of R s.t. $I \cong K_R$
- $r(R) = \ell_R(\operatorname{Ext}^1_R(R/\mathfrak{m}, R)).$

Definition 2.2 (Goto-Matsuoka-Phuong)

We say that R is an almost Gorenstein ring (abbr. AGL ring), if $e_1(I) \leq r(R)$.

Suppose I contains a parameter ideal Q = (a) as a reduction, i.e.

 $I^{r+1} = QI^{r} \text{ for } \exists r \ge 0.$ For $\forall n \ge 0$, since $I^{n+1}/Q^{n+1} \cong [\frac{I^{n+1}}{a^{n+1}}]/R \subseteq R^{I}/R$, we have $\ell_{R}(R/I^{n+1}) = \ell_{R}(R/Q^{n+1}) - \ell_{R}(I^{n+1}/Q^{n+1})$ $\ge \ell_{R}(R/Q^{n+1}) - \ell_{R}(R^{I}/R)$ $= \ell_{R}(R/Q)\binom{n+1}{1} - \ell_{R}(R^{I}/R)$

where $R^{I} = R[\frac{I}{2}] \subseteq \overline{R}$.

Hence

$$\ell_R(R/I^{n+1}) = \ell_R(R/Q)\binom{n+1}{1} - \ell_R(R'/R) \quad (\forall n \ge r-1).$$

This shows

•
$$e_0(I) = \ell_R(R/Q)$$

• $e_1(I) = \ell_R(R^I/R) \le \ell_R(\overline{R}/R).$

The embeddings

$$I/Q \stackrel{a}{\hookrightarrow} I^2/Q^2 \stackrel{a}{\hookrightarrow} \cdots \stackrel{a}{\hookrightarrow} I^{r-1}/Q^{r-1} \stackrel{a}{\hookrightarrow} I^r/Q^r \stackrel{\sim}{\to} I^{r+1}/Q^{r+1} \stackrel{\sim}{\to} \cdots \stackrel{\sim}{\to} R^I/R$$

yield that

$$\mathbf{r}(R)-1=\mu_R(I/Q)\leq \ell_R(I/Q)\leq \ell_R(I'/Q')=\mathbf{e}_1(I).$$

Therefore

•
$$\mu_R(I/Q) = \ell_R(I/Q) \iff \mathfrak{m}I \subseteq Q$$

• $\ell_R(I/Q) = e_1(I) \iff I^2 = QI$. (Huneke, Ooishi)

э

< ∃⇒

We set

$$K = \frac{I}{a} = \left\{\frac{x}{a} \mid x \in I\right\} \subseteq Q(R).$$

Then K is a fractional ideal of R s.t. $R \subseteq K \subseteq \overline{R}$ and $K \cong K_R$.

Theorem 2.3 (Goto-Matsuoka-Phuong)

R is an almost Gorenstein local ring $\iff \mathfrak{m}K \subseteq R$ (i.e. $\mathfrak{m}I \subseteq Q$).

```
Example 2.4 (AGL rings)

Let k be a field.

(1) k[[t^3, t^4, t^5]]

(2) k[[t^3, t^4, t^5]] \times_k k[[t]]

(3) k[[t^3, t^4, t^5]] \ltimes k[[t]]

(4) k[[X, Y, Z]]/I_2 \begin{pmatrix} X & Y & Z \\ Y^4 & Z & X^3 \end{pmatrix}
```

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example 2.4 (AGL rings)

- (1) $k[[t^3, t^4, t^5]]$
- (2) $k[[t^3, t^4, t^5]] \times_k k[[t]]$
- (3) $k[[t^3, t^4, t^5]] \ltimes k[[t]]$
- (4) $k[[X, Y, Z]]/I_2\left(\begin{array}{c} X & Y & Z \\ Y^4 & Z & X^3 \end{array}\right)$

Example 2.5 (non-AGL rings)

(1)
$$k[[t^3, t^{3n+1}, t^{3n+2}]]$$
 $(n \ge 2)$; in particular, $k[[t^3, t^7, t^8]]$

- (2) $k[[t^3, t^7, t^8]] \times_k k[[t]]$
- (3) $k[[t^3, t^7, t^8]] \ltimes k[[t]]$
- (4) $k[[X, Y, Z]]/I_2\left(\begin{array}{cc} X^2 & Y^2 & Z \\ Y^4 & Z & X^3 \end{array}\right)$

Question 2.6

How can we classify these non-almost Gorenstein rings?

Recall that

•
$$R \subseteq K \subseteq \overline{R}$$
 s.t. $K \cong K_R$

• $e_0(I) - \ell_R(R/I) \le e_1(I)$ (Northcott's inequality)

•
$$e_0(I) - \ell_R(R/I) = e_1(I) \iff I^2 = QI \iff R$$
 is Gorenstein.

Theorem 2.7 (Goto-Matsuoka-Phuong) *TFAE*.

(2)
$$e_1(I) = e_0(I) - \ell_R(R/I) + 1$$
, i.e., Sally's equality holds true.

(3) $\ell_R(K^2/K) = 1.$

When this is the case, one has $K^2 = K^3$ and

$$\ell_R(R/I^{n+1}) = (\operatorname{r}(R) + \ell_R(R/I) - 1) \binom{n+1}{1} - \operatorname{r}(R) \quad \text{for } \forall n \ge 1.$$

イロト イボト イヨト イヨト

э

We set

$$\mathcal{R} = \mathcal{R}(I) = R[It] \cong \bigoplus_{i \ge 0} I^i$$
 and $\mathcal{T} = \mathcal{R}(Q) = R[Qt] \cong \bigoplus_{i \ge 0} Q^i$

where t is an indeterminate. We define

$$\mathcal{S}_Q(I) = I\mathcal{R}/I\mathcal{T} \cong \bigoplus_{i\geq 1} I^{i+1}/IQ^i.$$

Then

•
$$S_Q(I) = (0) \iff I^2 = QI$$

• $S_Q(I) = \mathcal{T} \cdot [S_Q(I)]_1 \iff I^3 = QI^2$

Theorem 2.8 (Goto-Nishida-Ozeki)

Set $\mathfrak{p} = \mathfrak{mT} \in \operatorname{Spec} \mathcal{T}$. The following assertions hold true.

(1)
$$\mathfrak{m}^{\ell} \cdot S_Q(I) = (0)$$
 for $\ell \gg 0$.

(2) Ass_{\mathcal{T}} $\mathcal{S}_Q(I) \subseteq \{\mathfrak{p}\}$; hence dim_{\mathcal{T}} $\mathcal{S}_Q(I) = \dim R$, if $\mathcal{S}_Q(I) \neq (0)$.

(3)
$$e_1(I) = e_0(I) - \ell_R(R/I) + \ell_{\mathcal{T}_p}([\mathcal{S}_Q(I)]_p).$$

We consider

$$\operatorname{rank} \mathcal{S}_Q(I) := \ell_{\mathcal{T}_p}([\mathcal{S}_Q(I)]_p) = e_1(I) - [e_0(I) - \ell_R(R/I)]$$

which is an invariant of R. Then

$$\mathbf{e}_1(I) = \mathbf{e}_0(I) - \ell_R(R/I) + \operatorname{rank} \mathcal{S}_Q(I).$$

Therefore

- *R* is a Gorenstein ring \iff rank $S_Q(I) = 0$
- *R* is a non-Gorenstein AGL ring \iff rank $S_Q(I) = 1$ (GMP)
- *R* is a 2-almost Gorenstein ring $\stackrel{def}{\iff}$ rank $S_Q(I) = 2$. (CGKM)

Question 2.9

For a given integer $n \ge 0$, what kind of rings satisfy rank $S_Q(I) = n$?

Naoki Endo (Meiji University)

< ロ > < 同 > < 三 > < 三 >

§3. One-dimensional Goto rings

Let $n \ge 0$ be an integer.

Definition 3.1 (My proposal)

We say that R is an *n*-Goto ring, if rank $S_Q(I) = n$ and $S_Q(I) = \mathcal{T} \cdot [S_Q(I)]_1$.

Note that R is n-Goto $\iff K^2 = K^3$ and $\ell_R(K^2/K) = n$.

Note that R is n-Goto $\iff K^2 = K^3$ and $\ell_R(K^2/K) = n$. Moreover

- R is 0-Goto $\iff R$ is Gorenstein
- R is 1-Goto \iff R is non-Gorenstein almost Gorenstein
- R is 2-Goto $\iff R$ is 2-almost Gorenstein
- R is $\ell_R(R/\mathfrak{c})$ -Goto \iff R is generalized Gorenstein.

Remark 3.2

(1) rank
$$S_Q(I) \leq 2 \implies K^2 = K^3$$
.

(2) There is an example s.t. rank $S_Q(I) \ge 3$ and $K^2 \ne K^3$.

Example 3.3

The ring $R = k[[H]] = k[[t^h | h \in H]] (\subseteq k[[t]])$ is an *n*-Goto ring, where

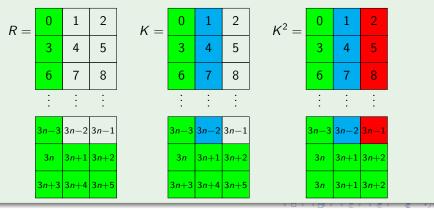
•
$$H = \langle 3, 3n+1, 3n+2 \rangle$$
 $(n \ge 1)$

• $H = \langle e, \{en - e + i\}_{3 \le i \le e-1}, en + 1, en + 2 \rangle \ (n \ge 2, e \ge 4).$

Example 3.3 (continued)

Let $H = \langle 3, 3n + 1, 3n + 2 \rangle$. Consider R = k[[H]] and set K = R + Rt. Then $R \subseteq K \subseteq \overline{R} = k[[t]]$ and $K \cong K_R$.

Since $K^2 = R + Rt + Rt^2 = \overline{R}$, we have $K^2 = K^3$ and $\ell_R(K^2/K) = n$. Hence R is an *n*-Goto ring and $\mu_R(K^2/K) = 1$.



Naoki Endo (Meiji University)

Generalization of Gorenstein rings

March 29, 2023

§4. Flat base changes

- (R_1, \mathfrak{m}_1) a CM local ring with dim $R_1 = 1$
- $\varphi: R \to R_1$ a flat local homomorphism s.t. $R_1/\mathfrak{m}R_1$ is Gorenstein.

Then dim $R_1/\mathfrak{m}R_1 = 0$, $K_1 := R_1 \otimes_R K \cong K_{R_1}$ and

 $R_1 \subseteq K_1 \subseteq R_1 \otimes_R \overline{R} \subseteq \overline{R_1}.$

Theorem 4.1

For each n > 0, we have

 R_1 is n-Goto $\iff \exists m > 0$ s.t. $m \mid n, R$ is m-Goto, and $\ell_{R_1}(R_1/\mathfrak{m}R_1) = \frac{n}{m}$.

Corollary 4.2

Let $n \ge 2$ be a prime number. Then R_1 is an n-Goto ring if and only if one of the following conditions hold:

(1) *R* is a non-Gorenstein AGL ring and $\ell_{R_1}(R_1/\mathfrak{m}R_1) = n$.

(2) *R* is an *n*-Goto ring and $\mathfrak{m}R_1 = \mathfrak{m}_1$.

Corollary 4.3

For each n > 0, we have

R is an n-Goto ring
$$\iff \widehat{R}$$
 is an n-Goto ring.

Example 4.4 (cf. Chau-Goto-Kumashiro-Matsuoka)

Let
$$R_1 = R[X]/(X^n + \alpha_1 X^{n-1} + \cdots + \alpha_n)$$
 $(n \ge 1, \alpha_i \in \mathfrak{m})$. Then

- R_1 is a flat local *R*-algebra with $\mathfrak{m}_1 = \mathfrak{m}R_1 + (x)$, where $x = \overline{X}$ in R_1
- $R_1/\mathfrak{m}R_1 = (R/\mathfrak{m})[X]/(X^n)$ is an Artinian Gorenstein ring
- $\ell_{R_1}(R_1/\mathfrak{m}R_1) = n.$

Hence, if $n \ge 2$ is a prime integer, then

 R_1 is an *n*-Goto ring $\iff R$ is a non-Gorenstein AGL ring.

3

Example 4.5

Let K/k be a finite extension of fields with $[K : k] = n \ge 2$. Set $\omega_1 = 1$ and choose a k-basis $\{\omega_1, \omega_2, \ldots, \omega_n\}$ of K. For a numerical semigroup H and $0 < a \in H$, we consider

 $R = k[[H]] \subseteq R_1 = k[[H, \{\omega_i t^a\}_{1 \le i \le n}]] \subseteq K[[H]] \subseteq K[[t]].$

Suppose $r(T) \ge 2$. Then R_1 is a free *R*-module of rank *n* and $\ell_{R_1}(R_1/\mathfrak{m}R_1) = n$. Hence, if $n \ge 2$ is a prime integer, then

 R_1 is an *n*-Goto ring $\iff R$ is a non-Gorenstein AGL ring.

Example 4.6

Let $a_1, a_2, \ldots, a_\ell \in \mathbb{Z}$ $(\ell > 0)$ s.t. $gcd(a_1, \cdots, a_\ell) = 1$. Set $H = \langle a_1, a_2, \ldots, a_\ell \rangle$. For an odd integer $0 < \alpha \in H$ s.t. $\alpha \neq a_i$ $(1 \le i \le \ell)$, we consider

 $H_1 = \langle 2a_1, 2a_2, \dots, 2a_\ell, \alpha \rangle$ (the gluing of H and \mathbb{N}).

Then $R_1 = k[[H_1]]$ is a free module of rank 2 and $\ell_{R_1}(R_1/\mathfrak{m}R_1) = 2$. Hence

 R_1 is a 2-Goto ring $\iff R = k[[H]]$ is a non-Gorenstein AGL ring.

§5. Quasi-trivial extension

T a birational module-finite extension of R s.t. K ⊆ T and T ≠ R
J = R : T.

For each $\alpha \in R$, we set $A(\alpha) = R \oplus J$ as an additive group and define

 $(a,x) \cdot (b,y) := (ab, ay + bx + \alpha \cdot (xy))$ for $(a,x), (b,y) \in A(\alpha)$.

Then $A(\alpha)$ is a CM local ring with dim $A(\alpha) = 1$.

• If
$$\alpha = 0$$
, then $A(0) = R \ltimes J$.

• If
$$\alpha = 1$$
, then $A(1) \cong R \times_{R/J} R$, $(a, j) \mapsto (a, a+j)$.

Note that

L = T × K is a fractional canonical ideal of A(α).
r (A(α)) = μ_R(T) + r(R) = r_R(J) + μ_R(K/J).

Theorem 5.1

Let $n \ge 1$. Then TFAE.

- (1) $A(\alpha)$ is an n-Goto ring for $\forall \alpha \in R$.
- (2) $A(\alpha)$ is an n-Goto ring for $\exists \alpha \in R$.
- (3) $R \times_{R/J} R$ is an n-Goto ring.
- (4) $R \ltimes J$ is an n-Goto ring.

(5) $\ell_R(R/J) = n$.

We choose $T = R[K] (= R^{I})$ and set $\mathfrak{c} = R : R[K] (= J)$.

Corollary 5.2

Let $n \ge 1$. Then TFAE.

(1) R is an n-Goto ring and $\mu_R(K^2/K) = 1$.

(2) $A = R \times_{R/c} R$ is an n-Goto ring and $\mu_A(L^2/L) = 1$.

(3) $A = R \ltimes \mathfrak{c}$ is an n-Goto ring and $\mu_A(L^2/L) = 1$.

Recall that

•
$$R = k[[t^3, t^{3n+1}, t^{3n+2}]] (n \ge 1)$$
 is *n*-Goto and $\mu_R(K^2/K) = 1$.

Example 5.3 (cf. Chau-Goto-Kumashiro-Matsuoka) Let n > 1. Suppose R is n-Goto and $\mu_R(K^2/K) = 1$. Consider

$$egin{aligned} & A_\ell = egin{cases} R & (\ell=0) \ & A_{\ell-1} \ltimes \mathfrak{c}_{\ell-1} & (\ell \geq 1) \end{aligned} \end{aligned}$$

where $\mathfrak{c} = A_{\ell-1} : A_{\ell-1}[K_{\ell-1}]$ and $K_{\ell-1}$ is the fractional canonical ideal of $A_{\ell-1}$. We have an infinite family $\{A_\ell\}_{\ell \ge 0}$ of *n*-Goto rings with $\mu_{A_\ell}(K_\ell^2/K_\ell) = 1$ and $e(A_\ell) = 2^{\ell} \cdot e(R)$ for $\forall \ell > 0$.

The ring $k[[t^3, t^7, t^8]] \ltimes k[[t]]$ is 2-Goto, since $c = R : k[[t]] = t^6 k[[t]] \cong k[[t]]$.

3

We consider

- (S, \mathfrak{n}) a CM local ring with dim S = 1 and $k = R/\mathfrak{m} = S/\mathfrak{n}$
- $f: R \rightarrow k, g: S \rightarrow k$ canonical maps
- $A = R \times_k S = \{(a, b) \in R \times S \mid f(a) = g(b)\} \subseteq R \times S.$

Then A is a CM local ring with dim A = 1. Note that

A is Gorenstein \iff R and S are DVRs.

Theorem 5.4

Suppose $\#k = \infty$, $\exists K_A$, and Q(A) is Gorenstein. Then TFAE for each $n \ge 2$.

(1) $A = R \times_k S$ is an n-Goto ring.

(2) One of the following conditions hold:

- (i) R is Gorenstein and S is n-Goto.
- (ii) R is n-Goto and S is Gorenstein.
- (iii) R is p-Goto and S is q-Goto for $\exists p, q > 0$ s.t. n + 1 = p + q.

Hence, if R is n-Goto and S is 2-Goto, then $A = R \times_k S$ is (n+1)-Goto.

§6. The case where r(R) = 2

Recall that, for each $n \ge 0$, R is n-Goto $\iff K^2 = K^3$ and $\ell_R(K^2/K) = n$.

Lemma 6.1

Suppose r(R) = 2. For each $n \ge 1$, we have R is n-Goto $\iff K^2 = K^3$ and $\ell_R(K/R) = n$. When this is the case, $K/R \cong R/c$ and R is a generalized Gorenstein ring.

Suppose that

•
$$R = k[[t^{a_1}, t^{a_2}, t^{a_3}]]$$
, where $0 < a_1, a_2, a_3 \in \mathbb{Z}$ s.t. $gcd(a_1, a_2, a_3) = 1$

- R is not a Gorenstein ring
- $\varphi: k[[X, Y, Z]] \rightarrow R$ the k-algebra map s.t.

$$\varphi(X) = t^{a_1}, \ \varphi(Y) = t^{a_2}, \ \text{and} \ \varphi(Z) = t^{a_3}.$$

Then

en $\operatorname{Ker} \varphi = \mathrm{I}_2 \left(\begin{smallmatrix} \chi^\alpha & Y^\beta & Z^\gamma \\ Y^{\beta'} & Z^{\gamma'} & \chi^{\alpha'} \end{smallmatrix} \right) \ \, \text{for} \ \, \exists \, \alpha, \beta, \gamma, \alpha', \beta', \gamma' > 0.$

Hence, $\ell_R(K/R) = \alpha \beta \gamma$ or $\ell_R(K/R) = \alpha' \beta' \gamma'$.

Example 6.2

Let $R = k[[t^7, t^{10}, t^{22}]]$. Then $K = R + Rt^8$ is a fractional canonical ideal of R. Note that $K^2 = K^3$ and

$$R \cong k[[X, Y, Z]]/\mathrm{I}_2\left(\begin{smallmatrix} X^2 & Y^2 & Z \\ Y^4 & Z & X^3 \end{smallmatrix}\right).$$

Hence $\ell_R(K/R) = 4$, so that R is a 4-Goto ring.

Theorem 6.3

Let R = k[[H]]. Suppose e(R) = 3 and R has minimal multiplicity. Then TFAE for each $n \ge 1$.

(1) R is an n-Goto ring.

(2) $H = \langle 3, 2n + \alpha, n + 2\alpha \rangle$ for $\exists \alpha \ge n + 1$ s.t. $\alpha \not\equiv n \mod 3$.

When this is the case, one has

 $R \cong k[[X, Y, Z]]/\mathrm{I}_2\left(\begin{smallmatrix} X^n & Y & Z \\ Y & Z & X^n \end{smallmatrix}\right) \quad \text{or} \quad R \cong k[[X, Y, Z]]/\mathrm{I}_2\left(\begin{smallmatrix} X^\alpha & Y & Z \\ Y & Z & X^n \end{smallmatrix}\right).$

§7. Minimal free resolutions

- (T, \mathfrak{n}) a RLR with dim $T = \ell \geq 3$, $\mathfrak{a} \subsetneq T$ and ideal of T s.t. $\mathfrak{a} \subseteq \mathfrak{n}^2$, $n \geq 2$
- $R = T/\mathfrak{a}$ is a CM local ring with dim R = 1, $\mathfrak{m} = \mathfrak{n}/\mathfrak{a}$
- K a fractional canonical ideal of R, c = R : R[K].

Suppose R is an *n*-Goto ring and $v(R/\mathfrak{c}) = 1$. Since $\ell_R(R/\mathfrak{c}) = n$, we can choose

$$x_1, x_2, \ldots, x_\ell \in \mathfrak{m}$$
 s.t. $\mathfrak{m} = (x_1, x_2, \ldots, x_\ell)$ and $\mathfrak{c} = (x_1^n, x_2, \ldots, x_\ell)$

By setting $I_i = (x_1^i, x_2, \dots, x_\ell)$ $(1 \le i \le n)$, we have

$$R: K = \mathfrak{c} = I_n \subsetneq I_{n-1} \subsetneq \cdots \subsetneq I_1 = \mathfrak{m}$$
 and

$$K/R \cong \bigoplus_{i=1} (R/I_i)^{\oplus \ell_i} \text{ for } \exists \ell_n > 0, \exists \ell_i \ge 0 \ (1 \le i \le n-1).$$

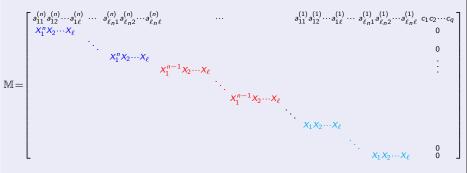
Write $K = R + \sum_{i=1}^{n} \sum_{j=1}^{\ell_i} R \cdot f_{ij}$ s.t. $(R/I_i)^{\oplus \ell_i} \cong \sum_{j=1}^{\ell_i} (R/\mathfrak{c}) \cdot \overline{f_{ij}}$ in K/R.

Choose $X_i \in \mathfrak{n}$ s.t. $x_i = \overline{X_i}$ in R.

n

Theorem 7.1

If $R = T/\mathfrak{a}$ is an n-Goto ring and $v(R/\mathfrak{c}) = 1$, then $F_1 \xrightarrow{\mathbb{M}} F_0 \xrightarrow{\mathbb{N}} K \to 0$ gives a minimal free presentation of K, where $\mathbb{N} = \begin{bmatrix} -1 & f_{n1} \cdots f_{n\ell_n} & f_{n-1,1} \cdots f_{n-1,\ell_{n-1}} & \cdots & f_{11} \cdots f_{1\ell_1} \end{bmatrix}$ and



Moreover, one has

$$\mathfrak{a} = \sum_{i=1}^{n} \sum_{j=1}^{\ell_i} \mathrm{I}_2 \begin{pmatrix} a_{j_1}^{(i)} a_{j_2}^{(i)} \cdots a_{j_\ell}^{(i)} \\ X_1^i X_2 \cdots X_\ell \end{pmatrix} + (c_1, c_2, \dots, c_q).$$

Naoki Endo (Meiji University)

Example 7.2

Let $\varphi: T = k[[X, Y, Z, W]] \longrightarrow R = k[[t^4, t^{11}, t^{13}, t^{14}]]$ be the k-algebra map defined by

$$arphi(X)=t^4,\;arphi(Y)=t^{11},\;arphi(Z)=t^{13},\; ext{and}\;arphi(W)=t^{14}$$

Then $K = R + Rt + Rt^3$ is a fractional canonical ideal of R. Hence, $K^2 = K^3$ and $\ell_R(K^2/K) = 3$, so that R is a 3-Goto ring. Moreover, v(R/c) = 1.

The minimal free presentation of K is given by $F_1 \xrightarrow{\mathbb{M}} F_0 \longrightarrow K \longrightarrow 0$, where

$$\mathbb{M} = \begin{bmatrix} Z & -X^3 & -W & -XY & Y & W & X^4 & XZ \\ X^3 & Y & Z & W & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & X^2 & Y & Z & W \end{bmatrix}$$

Hence

$$\operatorname{Ker} \varphi = \operatorname{I}_2 \begin{pmatrix} Z & -X^3 & -W & -XY \\ X^3 & Y & Z & W \end{pmatrix} + \operatorname{I}_2 \begin{pmatrix} Y & W & X^4 & XZ \\ X^2 & Y & Z & W \end{pmatrix}.$$

Theorem 7.3

Let $X_1, X_2, \ldots, X_\ell \in \mathfrak{n}$ be a regular sop of T and assume K has a presentation of the form

$$F_1 \stackrel{\mathbb{M}}{\longrightarrow} F_0 \stackrel{\mathbb{N}}{\longrightarrow} K \longrightarrow 0$$

where $\mathbb M$ and $\mathbb N$ are the matrices of the form stated in Theorem 7.1, satisfying the conditions that

•
$$a_{ij}^{(n)} \in J_n \ (1 \le i \le \ell_n, \ 1 \le j \le \ell)$$

• $a_{ij}^{(k)} \in J_n \ (1 \le k \le n-1, \ 1 \le i \le \ell_k, \ 2 \le j \le \ell)$
• $a_{i1}^{(k)} \in J_k \ (1 \le k \le n-1, \ 1 \le i \le \ell_k)$
where $J_i = (X_1^i, X_2, \dots, X_\ell) \ (1 \le i \le n)$. Then R is an n-Goto ring.

Example 7.4

Let k be a field. For any $\ell \geq 3$, $m \geq n \geq 2$,

$$R = k[[X_1, X_2, \dots, X_\ell]] / I_2 \begin{pmatrix} X_1^n & X_2 & \dots & X_{\ell-1} & X_\ell \\ X_2 & X_3 & \dots & X_\ell & X_1^m \end{pmatrix}$$

is an *n*-Goto ring with dim R = 1 and $r(R) = \ell - 1$.

§8. Higher-dimensional Goto rings

- (A, \mathfrak{m}) a CM local ring with $d = \dim A > 0$
- $I \subsetneq A$ an ideal of A s.t. $I \cong K_A$, and $n \ge 0$ an integer.

Definition 8.1 (My proposal)

The ring A is called *n*-Goto, if $\exists Q = (a_1, a_2, \dots, a_d)$ a parameter ideal of A s.t.

(1)
$$a_1 \in I$$

(2) $S_Q(J) = \mathcal{T} \cdot [S_Q(J)]_1$ (i.e., $J^3 = QJ^2$)
(3) rank $S_Q(J) = n$, where $J = Q + I$, $\mathcal{T} = \mathcal{R}(Q)$, and $S_Q(J) = \bigoplus_{i \ge 1} J^{i+1}/JQ^i$.

Example 8.2

Let k be a field. For any $\ell \geq 3$, $m \geq n \geq 2$,

$$A = k[[X_1, X_2, \dots, X_{\ell}, \frac{V_1}{V_1}, \frac{V_2}{V_2}, \dots, \frac{V_{\ell-1}}{V_{\ell-1}}]] / I_2 \begin{pmatrix} X_1^n & X_2 + \frac{V_1}{V_1} \dots & X_{\ell-1} + \frac{V_{\ell-2}}{V_\ell} & X_\ell + \frac{V_{\ell-1}}{V_\ell} \\ X_2 & X_3 & \dots & X_\ell & X_1^m \end{pmatrix}$$

is an *n*-Goto ring with dim $A = \ell$ and $r(A) = \ell - 1$.

Thank you for your attention.

< 日 > < 同 > <

æ