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Intro

§1. Introduction

Question 1.1

Why are there so many Cohen-Macaulay rings which are not Gorenstein?

@ Hierarchy of local rings (in terms of homological algebra)

Regular = Complete Intersection = Gorenstein = Cohen-Macaulay
= Buchsbaum = Generalized Cohen-Macaulay (FLC)

Problem 1.2

Find new and interesting classes of rings which fill in a gap between Gorenstein
and Cohen-Macaulay rings so as to stratify Cohen-Macaulay rings.
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Preceding researches

@ Almost Gorenstein rings - -+ Barucci-Froberg, Goto-Matsuoka-Phuong
Goto-Takahashi-Taniguchi

@ Semi-Gorenstein rings -+ Goto-Takahashi-Taniguchi

@ Generalized Gorenstein rings - -- Goto-Kumashiro

@ 2-almost Gorenstein rings - .- Chau-Goto-Kumashiro-Matsuoka

@ Weakly almost Gorenstein rings - - - Dao-Kobayashi-Takahashi

@ Nearly Gorenstein rings - -+ Herzog-Hibi-Stamate

@ Far-flung Gorenstein rings -+ Herzog-Kumashiro-Stamate

Nearly Gorenstein <= NG + minimal multiplicity 2-almost Gorenstein

. i _
& ﬂ’ T
<z -

Semi-Gorenstein ———=> Almost Gorenstein ———=> Generalized Gorenstein

dim=1
dim<1

Far-flung Gorenstein <= NG + Far-flung Gorenstein Weakly almost Gorenstein
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Prelim

§2. Preliminaries

Let
@ (A,m) a CM local ring with d =dimA > 0
@ [ an m-primary ideal of A.

Then ei() € Z (0<i<d) st

CA(A/1™) = eo(1) (” ‘; d) —ei(l) (" Zi; 1) o (=1)eq(l) (n>0).

Note that
@ ey(/) >0 and e (/) >0
@ Aisa RLR < ey(m) =1, if Ais unmixed. (Samuel, Nagata)
Theorem 2.1 (Koura-Taniguchi)
Set N(A) = {e1(I) | VI = m}. Then
#A(A) < oo <= d=1 and A is analytically unramified.
When this is the case, sup/A(A) = £a(A/A).
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In what follows, let
@ (R,m) a CM local ring with dimR =1
@ /| C Ranideal of Rs.t. | ZKg
@ 1(R) = (r(Extg(R/m, R)).
Definition 2.2 (Goto-Matsuoka-Phuong)
We say that R is an almost Gorenstein ring (abbr. AGL ring), if e1(/) < r(R).

Suppose | contains a parameter ideal Q@ = (a) as a reduction, i.e.

1" = QI" for Ir > 0.

In+1

For Vn >0, since /"1 /Qn+! = [5+]/R C R'/R, we have

(R(R/I™Y) = Lr(R/Q™) — (r(I™/Q™)
> (r(R/Q™) — Lr(R'/R)

_ @(R/Q)(”f) — (r(R'/R)

where R/ = R[é] CR.

Naoki Endo (Meiji University) Generalization of Gorenstein rings March 29, 2023



Hence
ER(R/I”H) =(r(R/Q) (n —1F 1) — (R(R’/R) (Vn>r—1).

This shows

o eo(/) = éR(R/Q)

o el(l) = ZR(RI/R) < fR(F/R)
The embeddings

//Q‘i>/2/02 a Ay - l/Qr 1 /r/Qr ~ /r+1/Qr+1 ;RI/R
yield that

r(R) —1=pur(l/Q) < (r(1/Q) < Lr(I"/Q") = ex(/).

Therefore

o ur(l/Q)=1(tr(l/Q) <= mICQ
@ /r(1/Q) =ei(l) <= I?>= QI. (Huneke, Ooishi)
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We set |
X
K:f:{g\xel}gQ(R).

a
Then K is a fractional ideal of Rst. RCK CR and K~ Kg.

Theorem 2.3 (Goto-Matsuoka-Phuong)

R is an almost Gorenstein local ring <— mK C R (i.e. m/ C Q).

Example 2.4 (AGL rings)
Let k be a field.

(1) K[£, 2%, 2]

(2) KIIE, 4, £°) < K[[E]]
(3) K[£?, %, 2] o< k[t]]
(4)

4 k[[X7 sz]]/:[2 (\)/<4 }/)?3)
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Example 2.4 (AGL rings)

(1) K[£3, 2%, 2]

(2) KI[£%, %, 1] > K[[¢]
(3) KIIE2, ¢4, £°]  K[[t]]

(4) KX, Y, ZII/T2 (3o 7 )

Example 2.5 (non-AGL rings)

(1) K[[t3, £3m+1, £37+2]] (n > 2); in particular, k[[t3,t7, t8]]
(2) I[£3, 7, 8] = KI[2]]

(3) Kllt>, ¢, £°]] o K[t]]
(4)

4) KXY, 20/ (525 %)

Question 2.6
How can we classify these non-almost Gorenstein rings ?
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Recall that
@ RCKCR st. K=Kg
@ eo(/) —Lr(R/1) <ei(!) (Northcott's inequality)

@ eo(/) —tr(R/1) =ei1(l) — 2= QI <= R is Gorenstein.

Theorem 2.7 (Goto-Matsuoka-Phuong)
TFAE.

(1) R is a non-Gorenstein AGL ring.

(2) e1(l) =eo(l) —tr(R/I)+ 1, ie., Sally’s equality holds true.
(3) Lr(K?/K) = 1.

When this is the case, one has K* = K3 and

n+1
1

(r(R/I™) = (x(R) + Lr(R/I) — 1)( ) —1(R) for ¥n>1.
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We set
R=R()=R[ =PI and T=R(Q)=R[Qt] =P
i>0 i>0
where t is an indeterminate. We define
So()=IR/IT =PI /IQ".
Then 21
° So()=(0) << I?=QI
o So() =T [Se(N]; += IP=Q/I%

Theorem 2.8 (Goto-Nishida-Ozeki)
Set p =m7T € SpecT. The following assertions hold true.

(1) m*-Sg(1) = (0) for £ > 0.
(2) AsstSqo(l) C {p},; hence dimSqo(l) = dim R, if Sg(!) # (0).
(3) ew(!) = eo(!) = Lr(R/1) + L7, ([So(1)],)-

Naoki Endo (Meiji University) Generalization of Gorenstein rings March 29, 2023



We consider
rank So(/) = €7, ([Se(1)]y) = ex(!) — [eo(/) — €r(R/1)]
which is an invariant of R. Then
ex(1) = eo(l) = La(R/1) + rank Sq(1):
Therefore

@ R is a Gorenstein ring <= rankSg(/) =0

@ R is a non-Gorenstein AGL ring < rankSg(/) =1 (GMP)

@ R is a 2-almost Gorenstein ring & rank Sq(/) = 2. (CGKM)

Question 2.9

For a given integer n > 0, what kind of rings satisfy rank Sg(/) = n?
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One-dim rings

§3. One-dimensional Goto rings

Let n > 0 be an integer.

Definition 3.1 (My proposal)
We say that R is an n-Goto ring, if rank Sq(/) = n and Sq(/) = T-[Sq(/)]s- J

Note that R is n-Goto <= K2 = K2 and (g(K?/K) = n.

B R ol
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Note that R is n-Goto <= K2 = K* and (g(K?/K) = n. Moreover
@ R is 0-Goto <= R is Gorenstein
@ Ris 1-Goto <= R is non-Gorenstein almost Gorenstein

@ R is 2-Goto <= R is 2-almost Gorenstein

R is lr(R/c)-Goto <= R is generalized Gorenstein.
Remark 3.2

(1) rankSg(l) <2 = K?=K3.

(2) There is an example s.t. rankSg(/) >3 and K2 # K3.

Example 3.3
The ring R = k[[H]] = k[[t" | h € H]] (C k[[t]]) is an n-Goto ring, where
© H=(3,3n+1,3n+2) (n>1)

@ H= (e, {en— e+ i}s<i<e—1,en+1,en+2) (n>2, e > 4).
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One-dim rings

Example 3.3 (continued)

Let H= (3,3n+1,3n+ 2). Consider R = k[[H]] and set K = R + Rt. Then

RC K CR=kK[t] and K =
Since K? = R+ Rt + Rt = R, we have K2 = K3 and (g(K?/K) = n. Hence R

is an n-Goto ring and ugr(K?/K) = 1.

B 1|2
45
718
h3n2 : i

Kg.

K? =
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Base changes

§4. Flat base changes

@ (Ry,m;) a CM local ring with dim Ry =1
@ ¢ : R— Ry aflat local homomorphism s.t. R;/mR; is Gorenstein.
Then dim Ry /mRy =0, K1 := Ry g K = Kg, and
Ri C K1 C Ry ®r R C Ry
Theorem 4.1
For each n > 0, we have

Ry is n-Goto <= Im > 0s.t. m|n, R is m-Goto, and lg (Ry/mR;) = 2.

Corollary 4.2

Let n > 2 be a prime number. Then Ry is an n-Goto ring if and only if one of the
following conditions hold:

(1) R is a non-Gorenstein AGL ring and (g (Ry/mRy) = n.

(2) R is an n-Goto ring and mR; = m;.
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Base changes

Corollary 4.3
For each n > 0, we have

R is an n-Goto ring < R is an n-Goto ring.

Example 4.4 (cf. Chau-Goto-Kumashiro-Matsuoka)

Let Ry = R[IX]/( X"+ a1 X" 1 +---+a,) (n>1, aj €m). Then
@ Ry is a flat local R-algebra with m; = mRy + (x), where x = X in Ry
® Ry/mRy = (R/m)[X]/(X") is an Artinian Gorenstein ring
0 lp (Ri/mRy) = n.

Hence, if n > 2 is a prime integer, then

Ry is an n-Goto ring <= R is a non-Gorenstein AGL ring.
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Example 4.5 |
Let K/k be a finite extension of fields with [K : k]=n > 2. Set w; =1 and
choose a k-basis {w1,ws,...,wy} of K. For a numerical semigroup H and

0 < a € H, we consider
R = k[[H]] € Ri = k[[H, {wit"}1<i<n]] € K[[H]] € K][2]].

Suppose r(T) > 2. Then Ry is a free R-module of rank n and ¢g (R1/mRy) = n.
Hence, if n > 2 is a prime integer, then

Ry is an n-Goto ring <= R is a non-Gorenstein AGL ring.

Example 4.6 |

Let a1,az,...,a¢ € Z (£ > 0) s.t. ged(ay, - ,a¢) =1. Set H = (a1, ap,...,a).
For an odd integer 0 < o € H s.t. a # a; (1 < i < £), we consider

Hy = (2a1,2ay,...,2a,,«) (the gluing of H and N).

Then Ry = k[[H1]] is a free module of rank 2 and /g, (R;/mR;) = 2. Hence
Ry is a 2-Goto ring <= R = k[[H]] is a non-Gorenstein AGL ring.

= Saheue
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Quasi-trivial ext

§5. Quasi-trivial extension

@ T a birational module-finite extension of Rs.t. KC T and T # R
@ J=R:T.
For each o € R, we set A(a) = R @ J as an additive group and define
(a,x) - (b,y) := (ab,ay + bx + a-(xy)) for (a,x),(b,y) € A(a).
Then A(a) is a CM local ring with dim A(«) = 1.
@ If a =0, then A(0) = R x J.
@ If a =1, then A(1) = R xg/, R, (a,j) + (3,2 +)).
Note that

@ L =T x K is a fractional canonical ideal of A(«).

o r(A(@)) = jr(T) + 1(R) = rr(J) + ur(K/J).
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Quasi-trivial ext

Theorem 5.1 |
Let n> 1. Then TFAE.

(1) A(«) is an n-Goto ring for Vo € R.

(2) A(«) is an n-Goto ring for 3o € R.
(3) R xgyy R is an n-Goto ring.

(4) R x J is an n-Goto ring.

(5) £r(R/J) =n.

We choose T = R[K] (= R') and set ¢ = R : R[K] (= J).
Corollary 5.2
Let n> 1. Then TFAE.

(1) R is an n-Goto ring and pr(K?/K) = 1.
(2) A= R xgc R is an n-Goto ring and pua(L?/L) = 1.
(3) A= R c is an n-Goto ring and pa(L?/L) = 1.
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Quasi-trivial ext

Recall that
@ R = k[[t3, 31 £37+2]] (n > 1) is n-Goto and ugr(K?/K) = 1.

Example 5.3 (cf. Chau-Goto-Kumashiro-Matsuoka)
Let n > 1. Suppose R is n-Goto and pg(K?/K) = 1. Consider

R (¢=0)
A=
Ar—1 X ¢p_q (( > 1)

where ¢ = Ap_1 : Ap_1[Ke—1] and K_1 is the fractional canonical ideal of Ay_;.

We have an infinite family {A;}¢>0 of n-Goto rings with pa,(K?/K¢) = 1 and
e(Ar) = 2% e(R) for V¢ > 0.

The ring k[[t3, 7, t8]] x k[[t]] is 2-Goto, since ¢ = R : k[[t]] = tOk[[t]] = k[[t]].
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Quasi-trivial ext

We consider

@ (5,n) a CM local ring with dimS =1and k=R/m = 5/n

@ f:R—k, g:5 — k canonical maps

0 A=Rx,S={(a,b)e RxS|f(a)=g(b)} CRXxS.
Then Ais a CM local ring with dim A = 1. Note that

A is Gorenstein <= R and S are DVRs.

Theorem 5.4
Suppose #k = 0o, AKa, and Q(A) is Gorenstein. Then TFAE for each n > 2.
(1) A= R xS is an n-Goto ring.
(2) One of the following conditions hold:

(i) R is Gorenstein and S is n-Goto.
(ii) R is n-Goto and S is Gorenstein.
(iii) R is p-Goto and S is g-Goto for Ap,q>0st. n+1=p+q.

Hence, if R is n-Goto and S is 2-Goto, then A= R x S is (n + 1)-Goto.
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§6. The case where r(R) =2

Recall that, for each n >0, R is n-Goto <= K2 = K3 and (r(K?/K) = n.
Lemma 6.1
Suppose r(R) = 2. For each n > 1, we have
R is n-Goto <= K? = K3 and (r(K/R) = n.
When this is the case, K/R = R/c and R is a generalized Gorenstein ring.

Suppose that
@ R = k[[t™,t%,t%]], where 0 < a1, a3, a3 € Z s.t. gcd(ag, az,a3) =1
@ R is not a Gorenstein ring
@ ¢ : k[[X,Y,Z]] = R the k-algebra map s.t.

QO(X) = tal, (p(Y) = tazl and (p(Z) — 3
a B8 v
Then Kerp =1 (;(5/ ;/ fa,) for Ja,B,v,0,8,7 > 0.
Hence, (r(K/R) = afiy or (r(K/R)=do/f'Y.
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Type 2

Example 6.2

Let R = k[[t", t1°,t?%]]. Then K = R + Rt3 is a fractional canonical ideal of R.
Note that K? = K3 and

R = K[[X,Y,Z]|/L ()»5‘2‘ 7 é)

Hence /r(K/R) = 4, so that R is a 4-Goto ring.

Theorem 6.3

Let R = k[[H]]. Suppose e(R) = 3 and R has minimal multiplicity. Then TFAE
for each n > 1.

(1) R is an n-Goto ring.
(2) H=(3,2n+a,n+2a) for 3o > n+1 s.t. a # n mod 3.
When this is the case, one has

R2KX, Y, Z/L (X ¥ Z) o REKIX,Y.ZN/L(X ¥ 4).
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Minimal free resolutions

§7. Minimal free resolutions

@ (T,n)aRLR withdim T =¢>3,a C T and ideal of T s.t. a Cn? n>2
@ R=T/ais a CM local ring withdimR =1 m=n/a

@ K a fractional canonical ideal of R, ¢ = R : R[K].

Suppose R is an n-Goto ring and v(R/c¢) = 1. Since ¢g(R/¢) = n, we can choose
X1, X2, ..., X EM st. m=(x1,x,...,x) and c¢=(x,x2,...,X¢).
By setting I; = (x{,x2,...,x) (1 < i< n), we have
R:K=c=1,Cl,1C---Ch=m and
K/R=EP(R/1)*" for 3¢, > 0,34 >0 (1 <i<n-1).

i=1

Write K = R+ 3.0, S0 R-fy st. (R/1)®% 20 (R/e)-f; in K/R.

Choose X; € ns.t. x; = X; in R.
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Minimal free resolutions

Theorem 7.1

If R =T /a is an n-Goto ring and v(R/¢) = 1, then F; RS Koo gives a
minimal free presentation of K, where N = [ =1 fou-for, fo11fo1, ;o fiefie
and

() () (n) (n) J(n) . () 1,1, 1 (1) (1) . (1) 7
1192 910 7 190,270 211912 7910 7 3p1%,2" Fp,0 CLC27
X{ X+ Xy 0
0
X Xp---Xg
X XX
M= .
XXX
' X1 X0+ Xy
> .
L X1 X0+ Xy o |

Moreover, one has

o= 33w (B E ) |
J j J C1,C,...,Cq)-
2 X’ Xo o X, 1, €2, s “q

i=1 j=1
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Minimal free resolutions

Example 7.2

Let o : T = k[[X,Y,Z,W]] — R = k[[t*, t11, t13, t'%]] be the k-algebra map
defined by

e(X) =t*, o(Y) =t ¢(Z) = t3, and (W) = t**

Then K = R + Rt + Rt3 is a fractional canonical ideal of R. Hence, K? = K3
and /r(K?/K) = 3, so that R is a 3-Goto ring. Moreover, v(R/c) = 1.

The minimal free presentation of K is given by F; M, Fo — K — 0, where

X Y Z w 0 0 0 0
0 0 0 0 XY z W

zZ -x* -w Xy vy w x* XZ]
M =

Hence

Naoki Endo (Meiji University) Generalization of Gorenstein rings March 29, 2023 26/29



Minimal free resolutions

Theorem 7.3 |

Let X1,X5,...,Xe € n be a regular sop of T and assume K has a presentation of
the form i N

FR—F—K—0
where Ml and N are the matrices of the form stated in Theorem 7.1, satisfying the
conditions that

° afj")EJn(lél'Sém 1<j<Y)
1

0 a)e ) (1<k<n—1,1<i<l, 2<j<0)
° agf)GJk(lﬁkgnfl, 1<i<¥)
where J; = (X{, Xa,...,X¢) (L <i < n). Then R is an n-Goto ring.

Example 7.4
Let k be a field. Forany £ >3, m>n > 2,

R =Kl X, - X1/ (3587 %0 %)

is an n-Goto ring with dimR =1 and r(R) = ¢ — 1.
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Higher-dim rings

§8. Higher-dimensional Goto rings

@ (A,m) a CM local ring with d =dimA > 0
@ /| C Aanideal of As.t. [ 2 Kja, and n > 0 an integer.
Definition 8.1 (My proposal)
The ring A is called n-Goto, if 3Q = (a1, a2, ...,a4) a parameter ideal of A s.t.
(1) ay €l
(2) Se(J) =T [So(N]x (e, S =QF)
(3) rankSg(J) = n, where J = Q+1,T = R(Q), and Sq(J) = B>, J/JQ".

Example 8.2
Let k be a field. Forany £ >3, m>n > 2,

A= k[[Xl,Xz, e X, Vi, Vo, VK*l]]/Ig ();(1: Xz)ZVl Xe—l;;\/i—z XZ;}?I—I)

is an n-Goto ring with dim A=/ and r(A) = /¢ — 1.
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Higher-dim rings

Thank you for your attention.

Naoki Endo (Meiji University) Generalization o renstein rings March 29, 2023 29/29



	Intro
	Prelim
	One-dim rings
	Base changes
	Quasi-trivial ext
	Type 2
	Minimal free resolutions
	Higher-dim rings

